Weighted Estimates in L for Laplace’s Equation on Lipschitz Domains
نویسنده
چکیده
Let Ω ⊂ Rd, d ≥ 3, be a bounded Lipschitz domain. For Laplace’s equation ∆u = 0 in Ω, we study the Dirichlet and Neumann problems with boundary data in the weighted space L2(∂Ω, ωαdσ), where ωα(Q) = |Q−Q0|α, Q0 is a fixed point on ∂Ω, and dσ denotes the surface measure on ∂Ω. We prove that there exists ε = ε(Ω) ∈ (0, 2] such that the Dirichlet problem is uniquely solvable if 1 − d < α < d − 3 + ε, and the Neumann problem is uniquely solvable if 3 − d − ε < α < d − 1. If Ω is a C1 domain, one may take ε = 2. The regularity for the Dirichlet problem with data in the weighted Sobolev space L1(∂Ω, ωαdσ) is also considered. Finally we establish the weighted L 2 estimates with general Ap weights for the Dirichlet and regularity problems.
منابع مشابه
The Mixed Boundary Problem in L and Hardy spaces for Laplace’s Equation on a Lipschitz Domain
We study the boundary regularity of solutions of the mixed problem for Laplace’s equation in a Lipschitz graph domain Ω whose boundary is decomposed as ∂Ω = N ∪ D, where N ∩ D = ∅. For a subclass of these domains, we show that if the Neumann data g is in Lp(N) and if the Dirichlet data f is in the Sobolev space L(D), for 1 < p < 2, then the mixed boundary problem has a unique solution u for whi...
متن کاملOn Estimates of Biharmonic Functions on Lipschitz and Convex Domains
Abstract. Using Maz’ya type integral identities with power weights, we obtain new boundary estimates for biharmonic functions on Lipschitz and convex domains in R. For n ≥ 8, combined with a result in [S2], these estimates lead to the solvability of the L Dirichlet problem for the biharmonic equation on Lipschitz domains for a new range of p. In the case of convex domains, the estimates allow u...
متن کاملEstimates for Weighted Bergman Projections on Pseudo-convex Domains of Finite Type in C
In this paper we investigate the regularity properties of weighted Bergman projections for smoothly bounded pseudo-convex domains of finite type in C. The main result is obtained for weights equal to a non-negative rational power of the absolute value of a special defining function ρ of the domain: we prove (weighted) Sobolev-L and Lipschitz estimates for domains in C2 (or, more generally, for ...
متن کاملWeighted Composition Operators Between Extended Lipschitz Algebras on Compact Metric Spaces
In this paper, we provide a complete description of weighted composition operators between extended Lipschitz algebras on compact metric spaces. We give necessary and sufficient conditions for the injectivity and the sujectivity of these operators. We also obtain some sufficient conditions and some necessary conditions for a weighted composition operator between these spaces to be compact.
متن کاملWeighted composition operators between Lipschitz algebras of complex-valued bounded functions
In this paper, we study weighted composition operators between Lipschitz algebras of complex-valued bounded functions on metric spaces, not necessarily compact. We give necessary and sufficient conditions for the injectivity and the surjectivity of these operators. We also obtain sufficient and necessary conditions for a weighted composition operator between these spaces to be compact.
متن کامل